
IISSSSUUEE 2288 -- NNOOVV 22001144

AA MMaaggaazziinnee ffoorr RRaassppbbeerrrryy PPii UUsseerrss

hhttttpp::////wwwwww..tthheemmaaggppii..ccoommRRaassppbbeerrrryy PPii iiss aa ttrraaddeemmaarrkk ooff TThhee RRaassppbbeerrrryy PPii FFoouunnddaattiioonn..
TThhiiss mmaaggaazziinnee wwaass ccrreeaatteedd uussiinngg aa RRaassppbbeerrrryy PPii ccoommppuutteerr..

FFUUZZEE BBAASSIICC

VVooIIPP SSeerrvveerr

AArrdduubbeerrrryy

UUssiinngg GGiitt

BBiittSSccooppee

IInnttrroodduucciinngg

OOppeennCCVV

GGeett pprriinntteedd ccooppiieess

aatt tthheemmaaggppii..ccoomm

Win £450
worth ofprizes
in ourFUZE
BASIC

programming
competition

http://www.themagpi.com
http://www.themagpi.com

Ash Stone - Chief Editor / Administration

Ian McAlpine - Layout / Proof Reading

W.H. Bell - Issue Editor / Administration / Layout

Bryan Butler - Page Design / Graphics

Matt Judge - Website

Nick Hitch - Administration

Colin Deady - Layout / Proof Reading

The MagPi Team

Dougie Lawson - Testing

Nick Liversidge - Proof Reading

Martin Wolstencroft - Layout / Proof Reading

Mark Pearson - Layout

David Bannon - Testing / Proof Reading

Shelton Caruthers - Proof Reading

Rita Smith - Proof Reading

Claire Price - Proof Reading

2

28

This month's Issue is packed with hardware and programming articles. We are pleased to present the

first article in an OpenCV (open source computer vision) image recognition software series by Derek

Campbell . The robot that Derek used to test the software configuration is shown on this month's cover.

Expanding the I/O possibi l i ties of the Raspberry Pi is often a first step of electronics projects. This time,

Dougie Lawson presents a review of the Arduberry board from Dexter Industries. This l i ttle board

provides an ideal microcontrol ler interface for more complicated electronics projects. This month's

hardware articles are rounded off by Karl-Ludwig Butte's third BitScope article, which includes

examples of preamplifier circuits and associated test and measurement.

The Raspberry Pi provides the opportunity to run many different software applications. Voice over IP

(VoIP) al lows telephone calls to be carried over an internet connection. Walberto Abad continues his

mini-series by describing how to setup an Asterisk VoIP server.

The second application article this month continues the discussion of git (distributed version control

system). Git was original ly produced for Linux kernel development, but is now a mainstay of many

different development projects and has been adopted by several schools too. Alec Clews leads us

through his second tutorial on the subject.

This month's programming article demonstrates how to bui ld an arcade game using FUZE BASIC. Jon

Silvera includes instructions, code and images to bui ld a horizontal ly scrol l ing game.

We are on the look out for more articles at al l levels and on all subjects. I f you are interested in

submitting an article, please get in touch with us by email ing articles@themagpi.com.

I f you have any other comments, you can find us on

Twitter (@TheMagP1) and Facebook

(http://www.facebook.com/MagPiMagazine) too.

Chief Editor of The MagPi

http://www.facebook.com/MagPiMagazine

3

4 OPENCV
Computer Vision on the Raspberry Pi

1 0
Unite the Raspberry Pi and Arduino

ARDUBERRY

Part 3: Electronic measurement with the Osci l loscope add-on board
1 4 BITSCOPE

20
Part 2: Connecting to the telephone network
VOICE OVER IP

41
Mechelen Belgium, Berl in Germany, Cheltenham UK, Hull UK, Warwick USA

THIS MONTH'S EVENTS GUIDE

VERSION CONTROL26
Part 2: What happens when you make document changes

Part 4: Font scal ing plus we add the final touches to our game
32

FUZE BASIC

42
Send us your feedback and article ideas
HAVE YOUR SAY

39
Win one of three Raspberry Pi FUZE kits worth a total of £450 in our programming competition

COMPETITION

http://www.themagpi.com

Contents

http://www.themagpi.com

4

SKILL LEVEL : INTERMEDIATE

Derek Campbell

Guest Writer

INTRODUCING OPENCV
Optical Navigation

Computer Vision on the
Raspberry Pi

Meet Piter, my avatar robot project. He stands on

two wheels and has a Raspberry Pi for brains.

Piter has a Pi camera and hardware for making

l ight and sound. His head has servos so that he

can look around, and he is able to tel l how far

away he is from obstacles in his path.

This article describes how his camera helps him

navigate. You don’t need a robot to try out the

ideas. Al l you wil l need is a Raspberry Pi and

camera (a USB webcam wil l also work).

I ’m trying to promote interest in robotics at my

local cub scout pack. Cubs learn lots of

techniques for use when they are out and about

hiking. One of them is cal led ‘tracking’ . When

one group of cubs needs to fol low a trai l left by

another group, they look for signs left behind by

the lead group to tel l them where to go. The lead

group leaves behind marks -- knotted grass or

small groups of stones -- that tel l the fol lowing

group which way they went.

Piter does tracking

To simplify image recognition for the robot

(spotting knotted grass is a bit beyond simple

computer vision) we created some symbols that

mimic the ones the cubs would use in the field,

but that the robot could find and fol low. The

symbols are printed in green and look l ike this:

Robot tracking symbols

Turn Back, Turn Left, Home, Turn Right

How Piter sees

Piter fol lows the symbols by taking the fol lowing

approach:

First of al l he looks for a patch of green colour in

his field of view. He drives towards the largest

matching patch unti l he is close enough to

recognise the symbol. Once the symbol is

recognised the robot fol lows the instruction and

then looks for the next patch. He repeats this

unti l he reaches the symbol tel l ing him he has

reached his goal.

To do this, Piter uses the onboard Raspberry Pi

and camera and processes the real time images

using an awesome open source computer vision

l ibrary cal led OpenCV.

OpenCV runs on all major operating systems and

provides al l the tools needed to locate and

5

decode the symbols. I could have sent the

camera images to a host computer and done the

OpenCV processing there, returning the results

to the Raspberry Pi. However, that would mean

the robot would not be truly autonomous.

Therefore I chose to implement the camera

processing in the Raspberry Pi on board the

robot. This did mean that I had to think a bit

more about performance. In the end I achieved a

processing rate for l ive images of about 2 to 3

frames per second. Not enough to play tennis,

but easi ly enough to find and fol low cub scout

tracking signs.

Let's get started...

Instal l ing OpenCV has a couple of steps, and

instructions for doing so are included at my robot

web site https://github.com/Guzunty/Pi/wiki/PiTe

R-and-OpenCV.

To allow OpenCV to read images from the

Raspberry Pi camera, we also need a uti l i ty

cal led uv4l (Userspace Video for Linux).

Instructions for this are also found on the web

site.

Having instal led these two, you can try out the

programs. You may find it best to clone the whole

Guzunty/Pi section of the l ink below, then explore

the tree to study the programs. I used Python for

the programs. The first demo shows how to

capture images to make them available for

further processing. The Git l ink is https://github.

com/Guzunty/Pi/tree/master/src/gz_piter/MagPi

Program 1 - imageCap.py

import cv2

cap = cv2. VideoCapture(-1)

if (not cap. isOpened()):

print("Cannot open camera")

else:

while True:

success, frame = cap. read()

cv2. imshow("Captured: " , frame)

if (cv2. waitKey(1) == 27):

break

cap. release()

cv2. destroyAllWindows()

Code walkthrough
To read an image from the Raspberry Pi camera

we must first open the camera inside OpenCV.

import cv2

cap = cv2. VideoCapture(-1)

Next, we want to read a frame from the camera.

success, frame = cap. read()

I t’s that easy! Now, let’s show the image in a

window to make sure we real ly got a picture.

cv2. imshow(frame)

So now we have a picture. Each frame is a single

bitmap in the stream of video data coming from

the Pi camera. Within that frame we need to

locate the symbol, so we hunt for the colour.

Program 2 - colour.py
The first step is to look for a patch of a particular

colour. How do we do that? Fortunately OpenCV

has a bui lt in function to do just that. I t’s cal led

inRange() .

The program colour. py displays six sl iders to

control the range of the colour values: Hue,

Saturation and Value. We use these values

rather than the more famil iar Red, Green and

Blue because they are more suited to setting up

a colour range. Each colour value has a high and

low which mark the ends of the range that wil l be

accepted as the part of the image we’re looking

for using the inRange() function.

https://github.com/Guzunty/Pi/wiki/PiTeR-and-OpenCV
https://github.com/Guzunty/Pi/tree/master/src/gz_piter/MagPi

6

imgThresholded = cv2. inRange(imgHSV, (lowH,

lowS, lowV), (highH, highS, highV))

Here, low'x' and high'x' are two tri-valued colour

variables that represent the ends of a range of

colours between which OpenCV wil l accept as

being part of the patch. Why do we need a

range?

Well , a symbol in the real world has al l sorts of

things affecting how it looks. There may be

shadows or reflections fal l ing across it, and

different l ighting wil l make the actual colour

received at the camera differ sl ightly from the

ideal. Accordingly, we use inRange() to accept

a range of colours so that we ignore these

effects.

What about the returned value,

imgThresholded (aka 'mask')? This variable

contains another image, but unl ike the original

frame it is black and white. The white parts

represent the parts of the image that OpenCV

thinks are part of our colour patch and the black

parts are thought NOT to be. We wil l use this

mask later on.

Choosing the correct colour range is critical for

successful ly finding the patch. I f the range is too

narrow then the mask wil l not show all of the

patch or might even be all black. I f the range is

too wide then the mask wil l include parts of the

scene that are not part of the patch or might even

be all white.

Once we have used this program for the l ighting

situation in which we are going to operate, the

mask image wil l look l ike the top right quadrant

of the figure on the left. We make a note of the

high and low colour values and encode them into

the actual runtime program as lowColour and

highColour .

Cleaning up the mask

When using the cv2. inRange() function, the

resulting mask can be very grainy unless you

have very good lighting. OpenCV has two

functions that can help with this: erode() and

dilate() .

The erode() function shrinks the mask by

ignoring patches that are smaller than a passed

reference shape. The dilate() function does

the opposite. I t expands the mask so that islands

in the mask fuse together. A passed shape is

used the way a shaped paint tool is used in a

painting program like Gimp.

We call erode() first to remove isolated spots in

the mask, and afterwards cal l dilate() to fuse

the remaining pieces into a nice sol id mask.

Left: before erode() Right: after dilate()

Using the image to navigate

Ok, so now we have a bitmap which shows the

part of the scene where the symbol is found. This

is nice, but it’s not very helpful i f we are going to

drive the robot closer to the symbol in the real

world. I t would be better if we knew the

coordinates of the centre of the patch. That way,

if the x value is in the left hand side of the image

we can steer left to centre it.

OpenCV has just the thing. To find the centre of

7

the patch, we use a function cal led

findContours() . You know what contour l ines

on a map are, right? They are l ines that join

points that are at the same height above sea

level. These OpenCV contours represent a path

through the bits in the mask image which have

the same colour value.

Program 3 - tracking.py
In tracking. py we pass in the mask we found

using inRange() and we get back a set of

contours found in the 'mask' (aka.

imgThresholded in program 2).

contours, hierarchy = cv2. findContours(mask,

RETR_TREE, CHAIN_APPROX_SIMPLE)

Why do we get more than one contour? Well , i f

we didn’t get our colour range perfect, there wil l

be some holes or islands in the mask. OpenCV

can’t know which contour is the actual part of the

image we want, so it returns al l the contours it

finds.

But which one do we need? No worries - Since

we tuned our colour range to find our patch, we

can assume that the contour with the largest area

houses our patch.

Find the contour with the greatest area area

= 0. 0 contour = None for candidateContour in

contours:

candidateArea =

cv2. contourArea(candidateContour)

if candidateArea > area:

area = candidateArea

contour = candidateContour

After executing this loop, the contour variable

holds the contour which surrounds our patch in

the robot's field of view. Now we can find the co-

ordinates of the centre:

m = cv2. moments(c)

centroid =

(m[' m10'] /m[' m00'] , m[' m01'] /m[' m00'])

We call i t a centroid as opposed to a centre

because the contour is almost certainly not a

regular shape.

Armed with our centroid we can use the x value

to steer the robot left and right unti l we get close

enough to the symbol to identify it. We can tel l

when we are close enough when the the patch

gets to a certain size:

x, y, w, h = cv2. boundingRect(contour)

This wil l give us the size of the patch as it

appears to the robot, so now we know when to

stop driving forward.

Which symbol did we find?

Next, we need to decide what symbol we are

stopped in front of. To do this we use OpenCV's

feature detection and object recognition support.

First of al l , we need a grayscale image. To do

this I spl it out the red channel from the original

frame. Because the symbols are printed in green,

the red channel wi l l show the symbol in the

strongest contrast (a bit l ike what happens with

old fashioned 3D glasses).

Sample image in red and green channels

We also do some auto exposure on the image to

make it as clear as possible for the recognition

process.

image =

cv2. equalizeHist(cv2. split(frame)[RED])

Next, we crop out the part of the image that

contains the patch (x, y, h and w come from the

bounding rectangle we got from the contour) .

image = image[y: y+h, x: x+w]

Now, we’ l l use an OpenCV SURF feature

detector to detect key points in the image. Key

points are parts of the image which contain

8

corners and other significant features. We extract

them using the function detectAndCompute() .

keyPoints, descriptors =

detector. detectAndCompute(image, None)

The descriptors are data structures which tel l

more about the key points, such as the

orientation of a corner or edge. We don’t need to

know anything about this information because

OpenCV also provides tools for matching key

point descriptors in different images. This is how

we decide which symbol we are looking at. What

we do is to provide the program with a perfect

image of each symbol. We run the feature

detector on the sample images and compute

their key points too.

symbol = cv2. imread(fileName)

symbolKeypoints, symbolDescriptors =

detector. detectAndCompute(symbol, None)

Since the ideal images don’t change, we only

need to compute these key points and

descriptors once.

Now, armed with descriptors for our ideal images

we run an OpenCV matcher on the two sets of

key points.

FLANN_INDEX_KDTREE = 0

index_params = dict(algorithm =

FLANN_INDEX_KDTREE, trees = 5)

search_params = dict(checks = 50)

matcher = cv2. FlannBasedMatcher(

index_params, search_params)

matches = matcher. knnMatch(symbolDescriptors,

descriptors, 2)

We rank the matches by how closely they match

between the images and only take the best ones.

good_matches = []

for match in matches:

if match[0] . distance < match[1] . distance *

0. 7:

good_matches. append(match)

The matches we have left define how closely the

ideal image resembles the actual piece of the

robot's view. We repeat the match process for

each candidate symbol. The more matches we

get, the more l ikely the symbol we’re looking at is

the one in the ideal image.

Matches between symbol and real scene

Next steps

Once we know which image matches, we can

implement the code which makes the robot

respond to the symbol, but that is a topic for

another article.

Al l the code for Piter is avai lable at https://

github.com/Guzunty/Pi/tree/master/src/gz_piter.

Remember, you don’t even need a robot to try it

out.

You can also get involved at the Raspberry Pi

forums where the author wil l be hosting a thread

for PiTeR in the Automation, sensing and

Robotics category.

https://github.com/Guzunty/Pi/tree/master/src/gz_piter

http://www.wyliodrin.com

1 0

SKILL LEVEL : BEGINNER

Dougie Lawson

MagPi Writer

ARDUBERRY
Unite the Raspberry Pi and Arduino

Introducing the Arduberry

Before I start I wi l l give you two crucial definitions;

1) Micro-control ler - an autonomous, single processor

computer system that does not have an operating

system, has general purpose I/O (GPIO),

programmable memory (flash & RAM) and some

read-only memory. I t wi l l normally run a single custom

made, dedicated program for a single purpose.

2) Micro computer - a single or multiple processor

system that runs an operating system. I t may have

external GPIO and it usual ly has a keyboard and

screen. I t wi l l normally run a multi-programming,

multi-tasking system and a variety of general purpose

application programs, plus some local ly written

programs. The crucial difference is that a micro

computer appears to be running more than one task

at a time while a micro-control ler runs one task only.

Since its introduction in 2005, the Arduino has

become a very popular micro-control ler used by

hobbyists. I t is cheap, it is easy to program, it is

versati le and well supported. The single task

application program running on an Arduino is typical ly

cal led a "sketch". Arduino has a standard layout of

GPIO pins so there is a massive col lection of add-on

hardware avai lable. The additional hardware that fits

an Arduino is typical ly cal led a "shield".

Compare that with the Raspberry Pi which is a very

popular micro computer used for education, by

hobbyists and a whole variety of other folks for a

multitude of tasks. They are from the same stable,

bui lt by their developers for simi lar reasons.

The Raspberry Pi and the Arduino may be suited to

different projects but they work well together. I t is

quite common for the Raspberry Pi with the Arduino

development IDE to be used to develop sketches that

can be uploaded to an Arduino. The starting point is:

sudo apt-get install arduino

When that is complete. connect your Arduino with a

USB-A to USB-B cable, start the GUI and write your

first application.

1 1

Here is a variation on the normal bl ink program that

wil l l ight four LEDs in sequence:

/* blinkSeq. ino

A variation on "Hello World" for Arduberry

(C) 2014 Dougie Lawson,

Creative Commons v4. 0 BY-NC-SA

Wire four LEDs with 560 ohm

resistors to pins 6, 7, 8 & 9 */

void setup() {

for (int i=6; i<=9; i++) {

pinMode(i, OUTPUT);

}

}

void loop() {

for (int i=6; i<=9; i++) {

digitalWrite(i, LOW);

delay(999);

digitalWrite(i, HIGH);

delay(999);

}

}

Wire four LEDs, each with a 560 ohm current l imiting

resistor between pin 6, pin 7, pin 8 and pin 9 and

GND on your Arduino Uno. Upload the sketch and the

LEDs wil l bl ink.

So we have the basics of using Raspbian with the

GUI to program an Arduino. The only thing that is

cumbersome is the wiring and using up a USB socket

on the Raspberry Pi (or in our USB hub). Wouldn't i t

be good if we could get an Arduino (primari ly as a

development tool) that sat on the Raspberry Pi GPIO

pins (in the way that a shield fits on an Arduino Uno)?

That is exactly what the Arduberry from Dexter

Industries does.

From the top the Arduberry looks l ike an Arduino

Uno; there is the standard layout of sockets that are

used for stacking Arduino shields. Note: this

Arduberry is missing a few optional components -

there is no 5V power supply, voltage regulator,

capacitors or header pins for the ICSP connector.

From the bottom you see that there is a standard 26-

pin GPIO connector and the heart of the Arduino, the

Atmel Atmega328P chip, down there. The Arduberry

wil l sit on a Raspberry Pi model B or model B+. When

it is mounted the Arduberry gets connections to the

Raspberry Pi 5V, 3V3, GND, UART TX & RX, SPI

SCLK, MOSI, MISO & CE0, I2C SDA & SCL pins. So

you MUST shutdown your Raspberry Pi and pul l the

power before mounting an Arduberry on the GPIO

pins. With a Raspberry Pi model B+ you MUST

ensure that just the first 26 pins are connected and

are l ined up correctly. Fai lure to power down or l ine

up the pins could destroy either your Raspberry Pi or

your Arduberry or both.

We have now got the Arduberry mounted and we

have rebooted Raspbian. There is sti l l some work

needed to get the Arduberry running. On the

command line, enter:

cd /tmp

git clone \

https: //github. com/DexterInd/ArduBerry. git

cd Arduberry

sudo chmod +x install. sh

sudo . /install. sh

Reply Y to the "Do you want to continue [Y/N]"

prompt.

1 2

That install. sh script wi l l instal l al l the pieces you

need (and have not yet instal led), customise them for

the Arduberry and when it is done it wi l l reboot your

Raspberry Pi.

I f your Raspberry Pi is not set-up to use the GUI

automatical ly, you wil l need to login as user pi and

use startx. When the desktop appears there should

be the new Arduino IDE icon (if not look in the start

menu). Start the IDE and load the example bl ink

sketch (File --> Examples --> 01. Basics -->

blink) or type in my version. (Note that the example

sketch blink. ino uses pin 1 3 since on many

Arduinos there is a factory fitted LED on pin 1 3. This

does not exist on an Arduberry so we need to add an

LED with a 560 ohm resistor between pin 1 3 and

GND to run the example blink. ino sketch.)

There is a sl ight quirk with the IDE when it comes to

uploading the sketch. With a regular Arduino Uno

connected, using a USB connection, we would cl ick

the Upload icon. With the Arduberry that does not

work and generates an obscure error message;

"avrdude: stk500_recv() : programmer is not

responding". To upload the sketch we need to ensure

we are using the right programmer options (Tools -->

Programmer --> Raspberry Pi GPIO) then use the

<CTRL>+<SHIFT>+<U> keys to make it so.

I f we swap the LED on pin 9 for a red LED, the LED

on pin 8 for a yel low LED and the LED on pin 7 for a

green LED, this sketch wil l run the famil iar sequence

of traffic l ights.

The Arduino programming language is a hybrid

between C and C++ so you can use compiler

directives. In this sketch if we change it to undef UK

and define US i t wi l l change to the United States

sequence (from red straight to green, skipping red

and amber). Compiler directives are useful for

debugging. You can define code that wil l only be bui lt

into the sketch when a true value or number greater

than zero value is defined for a DEBUG compiler

variable. I use that to l i tter my code with

Serial. print() and Serial. println()

commands. When the sketch works, update it to

#define DEBUG 0 and the debugging code wil l not

be bui lt into the final version.

/* TL. ino

Traffic lights on the Arduino

(C) 2014 Dougie Lawson,

Creative Commons v4. 0 BY-NC-SA */

/* Use compiler directives to control */

/* the sequence */

#define UK 1

#define US 2

// RED, RED+AMBER, GREEN, AMBER RED . . .

#define COUNTRY UK

// We' re going to skip RED+AMBER

// RED, GREEN, AMBER, RED . . .

//#undef COUNTRY

//#define COUNTRY US

int redLED = 9;

int yellLED = 8;

int grnLED = 7;

void setup() {

pinMode(redLED, OUTPUT);

pinMode(yellLED, OUTPUT);

pinMode(grnLED, OUTPUT);

}

void loop() {

digitalWrite(redLED, HIGH);

delay(1500);

#if COUNTRY == UK

digitalWrite(yellLED, HIGH);

delay(750);

#endif

digitalWrite(redLED, LOW);

digitalWrite(yellLED, LOW);

digitalWrite(grnLED, HIGH);

delay(1500);

digitalWrite(grnLED, LOW);

digitalWrite(yellLED, HIGH);

delay(750);

digitalWrite(yellLED, LOW);

}

1 3

One thing I found straight away with the Arduberry is

that whi le the Raspberry Pi is powered up (even if

Raspbian has been shut down with a sudo

shutdown -h command) the Arduberry wil l continue

to run. So I wrote a null sketch to effectively leave

the Arduberry running dormant:

/* null. ino

Null sketch so Arduberry runs dormant */

void setup() {

}

void loop() {

}

With an Arduino Uno it is normal to pul l the USB (or

the 5V power) to shut it down, but that is less easy

with the Arduberry since we have to shutdown

Raspbian, pul l the power, pul l the board off the GPIO

pins then reboot our Raspberry Pi. With the null

sketch the Arduberry is sti l l running the dummy

loop() function but appears to be doing nothing to

the outside world.

Another feature of the Arduberry is that we can

upload a sketch while it is stacked on top of the

Raspberry Pi, get it debugged and running the way

we want then perform an "Arduberry Separation" to

have the Arduberry running as a stand-alone system.

We upload the sketch with <CTRL>+<SHIFT>+<U>

while the Raspberry Pi is running, then shutdown the

Raspberry Pi (logout from the GUI and choose the

Shutdown option or open a command window and

use a sudo shutdown -h now command). Pul l the

power supply from the Raspberry Pi because we do

not want to damage either the Raspberry Pi or the

Arduberry during separation. The Arduberry has a

microUSB connector on the board, so we can borrow

the Raspberry Pi 's power supply to power our now

independent Arduberry.

See https://www.dexterindustries.com/Arduberry/

getting-started/powering-arduberry-dc-power-jack/ if

you want to add the optional components to add a 5V

power supply to the Arduberry.

We can also develop code on the Arduberry, get it

debugged and running, then upload it to a regular

Arduino Uno. The Arduberry becomes a development

system rather than a runtime system. The layout of

the pins is identical, the programming code we write

for the sketch is identical, the size of the fi le uploaded

to the Arduino or Arduberry is identical. That may be

an easier way to deploy our Arduino programs into

the field where they are going to run, away from the

Raspberry Pi.

The only problem I found with the Arduberry during

my testing was that the header sockets are not

label led on the si lk-screen printing on the Arduberry

board. I kept having to refer to a wiring diagram

http://forum.arduino.cc/index.php/topic,1 4631 5.0.html

or stare at my Arduino Uno to be sure I was not wiring

things to the wrong places. I am from the school of

wire it, check it, check it again, power it up. I do not

l ike wiring (or re-wiring) anything while it is running.

Since starting this article I have done some additional

programming using I2C on the Arduberry. I pul led al l

of my I2C devices (DS1 307 RTC, MCP2301 7 with an

8x8 LED matrix and LSM303DLHC accelometer

magnetometer) off my Raspberry Pi and wired them

to the Arduberry I2C pins. Programming these

devices with C (gcc and Gordon Henderson's

wiringPi) on the Raspberry Pi or the C/C++ hybrid

and the Arduino IDE is interchangable. That may be a

subject for a future article.

For anyone developing applications that use a stand-

alone Arduino, or an Arduino connected to a

Raspberry Pi, the Arduberry is an excel lent piece of

kit to add to your col lection of small board micro

computers and micro-control lers.

https://www.dexterindustries.com/Arduberry/getting-started/powering-arduberry-dc-power-jack/
http://forum.arduino.cc/index.php/topic,146315.0.html

1 4

SKILL LEVEL : INTERMEDIATE

Karl-Ludwig
Butte

Guest Writer

OSCILLOSCOPE
Add-on board

Electronic measurement with
BitScope - Part 3

In part 1 and part 2 of this series, we measured

DC and AC voltages. Now we are ready to use

this knowledge and go bug-hunting in electronic

circuits – the sort of things for which

osci l loscopes are made.

Before we start...

Did you try to calculate the frequency our clock

generator was running in our experiment in part2,

Issue 26 of The MagPi? If so then you know that

200 micro seconds is 0.0002 seconds and

according to part 1 in Issue 25 we only need to

calculate 1 divided by 0.0002 to get our answer:

5000 Hertz (or 5 kHz).

The clock generator frequency

In our first experiment today we wil l replace the

1 k resistor (R2) with a potentiometer (a resistor

with adjustable resistance value), as shown in

Fig. 1 .

For this experiment you need:

- 1 x 1 k potentiometer or trimmer (Tr1)

- 2x copper wires (single-wire)

- soldering iron and tin-solder

- side cutter, tweezers, cable stripper in addition

to the parts of the clock generator described in

part 2 in Issue 26.

Disconnect al l test leads from the board before

you implement the change. First we need to

prepare the potentiometer because its

connection pins do not fit into the tiny holes of the

breadboard. Strip about 5mm off the insulation at

both ends of the copper wires with a cable

stripper. I f you do not have such a tool you may

take a pair of scissors or a knife but be careful

not to cut your fingers!

Because we need to connect two pins of the

potentiometer together, one end of one copper

wire needs to be stripped about 1 5 mm. Solder

the wires to the pins of the potentiometer as

shown in Fig. 2.

Fig. 1 :
The change is marked with a green background and lets us

adjust the frequency of the clock generator.

1 5

Fig. 3 shows the breadboard with the changed

setup.

After you have finished the modification,

reconnect al l test leads as described in part 2 in

Issue 26. Set the time base (6) to 50 �sec/Div

and the Channel Control Pad for Channel A (7) to

2V/Div. In addition set the trigger controls (4) to

MEAN. Now change the value of the trimmer Tr1

by turning the white sl ider in the middle of Tr1

with a small screwdriver. While doing so, look at

the main screen (1) and observe the effect. The

higher the frequency the more periods of the

square wave you can see on the main screen (1) .

Now adjust the potentiometer to the lowest

frequency and change the time base (6) to 500

�sec/Div. You can sti l l see the square wave, but

if you adjust the trimmer Tr1 to the highest

frequency there is only a blur on the screen (1) .

This frequency is simply too much for this time

base setting. Slowly decrease the time base

setting (6) back to 50 �sec/div and observe how

the picture gets clearer with every decrement.

You wil l have observed that the lower horizontal

l ine of the square wave is much shorter than the

upper horizontal l ine. Therefore changing the

value of Tr1 not only changes the frequency but

the ratio of the square wave, too. Usual ly clock

generators are set to a 50% ratio, the so cal led

duty cycle, so that the lower and upper horizontal

l ines of the square wave are equal in length. You

need to change R1 and C1 , in addition to Tr1 , to

change the frequency and keep the duty cycle at

50% at the same time. The Internet provides

several sites with information about the NE555

timer IC and how to calculate the values for these

parts.

Let’s go bug-hunting

Recently I found a circuit diagram for a small

single transistor pre-amplifier (see Fig. 5) and

bui lt i t on a breadboard (Fig. 6). Please note the

polarity of the two electrolytic capacitors. When I

tried it out and checked its properties, I was

amazed to find out that it cl ipped the upper curve

of a sine wave. But let's see for yourself.

Fig. 2:
The 1k potentiometerwith the copper wires soldered to its pins.

Fig. 3:
The clock generatorwith potentiometerTr1 in exchange for

resistorR2.
Fig. 4:
Output of the clock generator set to the highest frequency

Fig 5:

Circuit diagram ofa small one-transistor pre-amplifier.

1 6

For this experiment you wil l need:

- 1 x BC238 transistor (T1)

- 1 x 56k resistor (R1)

- 1 x 2k2 resistor (R2)

- 1 x 22k resistor (R3)

- 1 x 1 k resistor (R4)

- 2x 1 0 �F/1 0V electrolytic capacitors (C1 , C2)

- 1 x 9V battery

- 1 x small breadboard

Checking an amplifier with a sine wave is a

wonderful idea but where do we get a sine

wave? Lucki ly our BitScope Micro is well

prepared for situations l ike this. I t provides us

with a ful l blown waveform generator, which we

wil l use now. When you start up the waveform

generator by cl icking on the WAVE button on the

right side, the WAVE CONTROL panel (Fig. 7)

wi l l appear on the left side.

When the waveform generator is active, the

control indicator (9) l ights up and a preview of

the generated waveform is displayed (1 0). With

the wave function buttons (1 1) you can control

the generated waveform. TONE generates a sine

wave while STEP generates a square wave, l ike

the clock generator we bui lt in Issue 26. Click on

these buttons to see the previews and get

acquainted with the different waveforms.

I f you think I forgot to tel l you about the RAMP

button, that was intended! I f you cl ick on the

RAMP button you wil l instantly see why this

waveform is cal led a ramp and spare me a

lengthy description. There are two sl ider controls

(1 4) and (1 7) which influence all the necessary

parameters of a waveform. Slider control (1 4)

adjusts the frequency (1 2) and the duty cycle

(1 3) whereas sl ider control (1 7) influences the

amplitude (1 5) and the DC-offset (1 6). For now

the default values are OK for our purposes so we

can start our first check of the pre-amplifier.

Fig. 8 shows all the necessary connections to

and from the pre-amplifier. To help you get

everything right I inserted the BitScope pin layout

as a reminder and noted the colors of the test

leads in brackets.

Fig. 8:
Connections to and from the pre-amplifier.

Fig. 6:
Single transistor pre-amplifier built on a breadboard

Fig. 7:

TheWAVECONTROL panel for the waveform generator (photo

courtesy byBitScope Designs)

http://www.bitscope.com
http://www.BUTTE-verlag.de
http://www.BUTTE-verlag.de

1 7

A few adjustments of the BitScope DSO

software are sti l l necessary. Please set the time

base control (6) to 50 �sec/Div and the Channel

Control Pad for Channel A (7) to 2V/Div. In

addition, right cl ick the OFFSET indicator of the

Channel Control Pad A (7) and select MEAN on

the context menu. The OFFSET indicator is

located above the 2V/Div display on the right

hand side (see Fig. 9). Now look at the result in

the main display (1) and compare the waveform

with the original in the preview area (1 0) of the

WAVE CONTROL pad. There is definitely

something wrong here. The upper curve of the

sine wave is cl ipped!

You may check the input signal by connecting

the red test lead to the minus pole of C1 . There

the sine wave is sti l l complete. Connecting the

red test lead to the plus pole of C2 ensures us

that this capacitor is innocent because it already

gets a cl ipped signal. This leaves transistor T1

and resistors R3 and R4 as possible candidates

for the sine-wave clipping.

The first suspicion is a misadjusted operating

point for T1 . The operating point is dependent on

resistors R3 and R4, so let's try a few alternative

values for R3. Perhaps we are lucky and find a

value which works. This would spare us the

tedious task of calculating al l components of the

circuit (a so cal led network analysis) . You may

try exchanging R3 with other resistors you have

avai lable before you read on.

I found a value of 22k to work best, as you can

see in Fig. 1 0. I f your screen sti l l shows a little

cl ipping after you changed R3, keep in mind that

resistors have some tolerances. The last colored

ring on the resistor encodes this tolerance. A

golden ring means 5% tolerance and a si lver ring

stands for 1 0%.

Conclusion

In this article you have used the BitScope Micro

osci l loscope together with its bui lt-in waveform

generator to find a miscalculated resistor in a

pre-amplifier circuit. The approach we used,

measuring a signal in different parts of a circuit to

identify a defective or miscalculated component,

can be used universal ly for developing or

repairing electronic devices.

In the three parts of this series I could only

scratch the tip of the iceberg. I hope you had as

much fun as I did. The BitScope Micro has much

more to offer but this wil l have to wait for future

issues of The MagPi.

For al l those interested in turning their Raspberry

Pi into a digital storage osci l loscope with the

BitScope Micro add-on board, it is avai lable from

BitScope Designs in Austral ia at

http://www.bitscope.com, in Germany at

http://www.BUTTE-verlag.de, in the UK at

http://shop.pimoroni.com and final ly in

Switzerland at http://www.pi-shop.ch.

Fig. 9:
Note the upper curve of the sine wave is clipped.

Fig. 1 0:
Correcting the working point ofT1 is the solution.

http://www.bitscope.com
http://www.butte-verlag.de
http://shop.pimoroni.com
http://www.pi-shop.ch
www.butte-verlag.de

http://www.oceanoptics.com

http://www.abelectronics.co.uk

20

SKILL LEVEL : INTERMEDIATE

Walberto Abad

Guest Writer

VOIP SERVER
Raspberry Pi telephone system

Using Asterisk to implement a

low cost phone system - Part 2

Gateway to PSTN

In my previous article, in Issue 26 of The MagPi,

we instal led Asterisk on a Raspberry Pi Model

B/B+ and configured it using FreePBX as a VoIP

server with an optional SIP phone or SIP adapter

(this article uses the Dlink DPH-1 50SE). We also

instal led and configured LinPhone soft phone

software, which has versions for iOS, Android,

Blackberry, Linux, Windows and OSX.

Now that we have an IP telephone system

instal led and running, the next step is to connect

it to other networks. In this article we wil l connect

to the regular telephone network, otherwise

known as PSTN (Public Switched Telephone

Network). We wil l then have a complete

telephone system, with the avai labi l i ty of a wired

telephone and the features and services of a ful l

IP phone system, at a very low cost.

Additional components

The only additional hardware required is a Voice

Gateway which supports SIP l ines for connection

to the PSTN. For this article I used a Cisco SPA-

31 02 which costs US$60.00, though Voice

Gateways from Obihai are also popular.

Installation

To instal l the Cisco SPA-31 02 you must first

configure a Trunk in Asterisk. We wil l do this

using FreePBX. From my previous article, open a

web browser and enter http: //raspbx or your

static IP. (For Apple Mac you wil l enter

http: //raspbx. local) . This wil l open the

FreePBX Administration page.

Click on FreePBX Administration . The default

login is admin , with the password admin . Cl ick

on the Connectivity tab and choose the

Trunks option. Cl ick on Add SIP Trunk, then

create a trunk for the PSTN telephony supplier.

In the General Settings section the main

configuration options are:

21

Trunk Name - Descriptive name for this trunk.

Outbound CallerID - Format: <#######>. You

can also use the format "hidden" <#######> to

hide the CallerID sent out over Digital l ines if

supported (i .e. E1 /T1 /J1 /BRI/SIP/IAX).

In the Outgoing Settings section the main

configuration options are:

Trunk Name - Give the trunk a unique name (e.g.

myiaxtel) . I have used 'cnttrunk'.

PEER Details - a ful l l ist of the required options

is shown below.

PEERDetails:

disallow=all

allow=ulaw

canreinvite=no

context=from-trunk

dtmfmode=rfc2833

host=dynamic

incominglimit=1

nat=never

port=5070

qualify=yes

secret=cnttrunk

type=friend

username=cnttrunk

Click on Submit Changes , then cl ick on the red

Apply Config button to save your changes.

To add a route for the incoming cal ls, cl ick on the

the Connectivity tab and then on the Inbound

Routes option.

In the Add Incoming Route section the main

configuration options are:

Description - Provide a meaningful description

of what this incoming route is for.

DID Number - Specify the expected DID (Direct

Inward Dial) number. You can also use a pattern

match (e.g. _2[345]X) to match a range of

numbers.

In the Set Destination section you specify

where the incoming cal l is routed, in this case to

an IVR (Interactive Voice Response).

Cl ick on Submit , then cl ick on the red Apply

Config button to save your changes.

To configure outbound calls cl ick on the

Connectivity tab and choose the Outbound

Routes option.

In the Route Settings section, specify the

Route Name . This can be used to describe what

type of cal ls this route matches e.g. 'local ' or 'long

distance'.

22

A Dial Pattern is a unique set of digits that wil l

select this route and send the cal l to the

designated trunks. I f a dial led pattern matches

this route, no subsequent routes wil l be tried. I f

Time Groups are enabled, subsequent routes wil l

be checked for matches outside of the

designated times.

In the Dial Patterns that will use this Route

section, the dial patterns are configured

according to each country or area. We can set

restrictions to al low local, regional, national,

international or mobile cal ls.

In the Trunk Sequence for Matched Routes

section, the trunk sequence controls the order of

trunks that wil l be used when the above Dial

Patterns are matched.

Click on Submit Changes , then cl ick on the red

Apply Config button to save your changes.

Configuring the voice gateway

The Cisco SPA-31 02 voice gateway is

connected to the network via its ethernet port.

The setup options are reached using a browser

pointing to the default IP address, e.g.

http: //192. 168. 0. 1.

In the Router tab choose the Wan Setup option.

Change the options to match your system. In my

case I used:

Connection Type - Static IP

Static IP - 1 72.31 .1 5.1 5

Gateway - 1 72.31 .1 5.1

NetMask - 255.255.255.0

Click on Submit All Changes .

An example architecture diagram is shown

below.

23

In the Router tab choose the Lan Setup option.

Set the Networking Service option to Bridge.

Click on Submit All Changes .

In the Voice tab choose the SIP option. The

main configuration options are:

SIP TCP Port Min - 5060

SIP TCP Port Max - 5080

RTP Packet Size - 0.020

In the Voice tab choose the PSTN Line option.

The main configuration options are:

Line Enable - yes

SIP Transport - UDP

SIP Port - 5070

SIP Proxy-Require - 1 72.31 .1 5.1 1

Proxy - 1 72.31 .1 5.1 1

The fol lowing configuration options are shown on

the right:

Display Name - CNT

User ID - cnttrunk

Password - (As in FreePBX)

Dial Plan 2 - (S0<:3285072)

Final ly, set the fol lowing option:

PSTN Caller Default DP - 2

Click on Submit All Changes . Other options

for Asterisk / FreePBX and the Gateway must be

configured according to your requirements.

Conclusion

You should now have a ful ly functioning VoIP

server connected to the PSTN and be able to

receive and send calls from anywhere. I leave it

to your imagination to make further use of this

high performance, low cost VoIP server.

http://swag.raspberrypi.org
http://www.modmypi.com
http://www.pi-supply.com
http://thepihut.com
http://www.adafruit.com
http://www.buyraspberrypi.com.au
http://www.milocreek.com
http://www.openelectrons.com

http://www.dexterindustries.com

26

SKILL LEVEL : BEGINNER

Alec Clews

Guest Writer

Version control basics using
Git - Part 2

Introduction

In Issue 27 of The MagPi, I introduced you to the

Git Version Control software. We instal led and

configured Git and then downloaded a sample

project cal led snakes . We created a repository

for the snakes project and added all the project

fi les to a Git repository.

This month I wi l l demonstrate the value of

running Version Control software by showing

what happens when we make changes to our

project fi les. Before we start, make sure you are

in the snakes folder. Enter:

cd ~/snakes

Now let's make a change. The first step is to

create a work area in which to make the change.

In Git (and many other VC tools) this dedicated

work area is cal led a branch . When you first

create a repo, the default branch that is created

is cal led the master. However, it is important to

know that there is nothing special about the

master branch - it can be treated in exactly the

same way as any branches you create yourself.

I f you look at the output from the git status

command you can see that we are currently

using the master branch in our working area.

Enter:

git status

What change do I want to make?

When I play the game of snakes the rocks are

represented by “Y” which I want to change to

“R”. The l ines I need to change are in the file

game/snake. py (l ines 50 and 52 in my version).

Let’s create a branch to work on. Enter:

git branch make_rocks_R

No message means the command was

successful (note that spaces are not al lowed in

the branch name). Creating a branch means that

I have a working area in my project (you can

think of it as a sandbox for a mini project) that

stops my change from breaking or impacting

any other work that is going on in the

snakes project.

You can get a l ist of al l the branches with the git

branch command. Enter:

git branch

Author photo courtesy of Jack Cotton

27

You wil l see something similar to:

make_rocks_R

* master

The asterisk shows the current branch.

To make the make_rocks_R the current branch

use the git checkout command. Enter:

git checkout make_rocks_R

You should see the fol lowing result:

Switched to branch ' make_rocks_R'

Now when you enter the git branch command

it displays:

* make_rocks_R

master

In technical terms what has happened is that Git

has checked out the branch make_rocks_R

into our working directory. The working

directory contains that set of files from the

specific branch that we are currently working on.

Any changes we now make are isolated in the

branch and wil l not impact anything else.

At this point you may want to play snakes

for a couple of minutes, so that you wil l be

able to see the difference later. Use the cursor

keys to control the snake, press <Spacebar> to

restart and press <Ctrl>+<C> to exit. Enter:

python game/snake. py

Changing the file

Edit the file game/snake. py using your favourite

text editor. In the version of snakes I have

there are two changes to make - a comment

on l ine 50 and the actual code on l ine 52.

Save the changes and test the game by playing it

again. The rocks should now look l ike “R”

instead of “Y”.

Showing the diff

So let us see what has changed. Git can provide

a nice l isting. The simplest way is by using the

command git diff. Enter:

git diff

You should see a report simi lar to this:

diff --git a/game/snake. py b/game/snake. py

index cef8d07. . 7e65efe 100755

--- a/game/snake. py

+++ b/game/snake. py

@@ -47, 9 +47, 9 @@ def add_block(scr,

width, height):

empty = False

if empty:

- # if it is, replace it with a

"Y" and return

+ # if it is, replace it with a

"R" and return

- scr. addch(y, x, ord("Y"),

curses. color_pair(2))

+ scr. addch(y, x, ord("R"),

curses. color_pair(2))

return

def snake(scr):

This report can be a little confusing the first time

you see it. However, if you look careful ly you can

see lines marked with + and -. These are the

l ines that have been changed. I f we had made

changes to more than one file then each set of

file differences would be l isted. This type of

information is often referred to as a diff report or

diff output.

You can get a more user friendly display of these

differences by using a graphical compare tool.

First instal l the kdiff3 program by entering:

sudo apt-get install kdiff3-qt

Now, instead of using git diff to get a text

report of the differences in your change you can

run git difftool to scrol l through a side by

side l ist. The difftool command supports

several different GUI style tools to present

28

the differences. Setting them up is left as an

exercise.

Committing the change

Now that we have a change and we have tested

it and have verified it using the difftool

command, it is time to add the change to our

version control history.

This is a two stage process, in a similar way to

our first commit:

1 . Add the changes to the index.

2. Commit the change to the repo, along with a

useful comment.

The first part is simple as only one file has

changed. Enter:

git add game/snake. py

You should then verify that the addition was

successful by running a git status command.

This time when we commit we want to add a

more complete report (cal led a commit

message) . But first let us make sure that our

editor is set up in Git. As an example we wil l set

up Leafpad as the editor. Enter:

git config --global core. editor "/usr/bin

/leafpad"

Note: Leafpad is a GUI editor and you wil l need

to run LXDE (startx) for it to work. I f you are not

using LXDE, or prefer a different editor, then use

the appropriate program name e.g.

/usr/bin/vim.

Now let’s make the commit. This time the

command, git commi t, is a l i ttle simpler but

something a l ittle more spectacular wil l happen.

Your editor wil l pop into l i fe in front of you with

information ready for you to write a commit

message.

You now have two choices:

1 . Exit the editor without saving any changes to

the commit message. The commit is aborted and

no changes occur in the repo (but the index sti l l

contains the change).

2. Enter some text, save it and exit the editor.

The commit is completed and all changes are

recorded in the repo.

A word about commit messages: The commit

message consists of two parts. Line 1 is the

header and should be fol lowed by a blank l ine.

The header is displayed in short log messages.

After the blank l ine comes the message body

which contains the detai ls. A detai led set of

suggestions can be read at http://tbaggery.com/

2008/04/1 9/a-note-about-git-commit-messages

.html.

The fol lowing is an example of a commit

message that might be used for the change we

have just made:

Changed Rocks Y > R

1. Changed all references to rocks from

the char "Y" to "R"

a. In a comment

b. In a single line of code

2. Tested

Enter the git commit command and use the

above commit message:

git commit

You should get output simi lar to the fol lowing:

[make_rocks_R ce3ed3f] Changed Rocks Y > R

1 file changed, 2 insertions(+), 2

deletions(-)

Showing the history

Notice how, in the picture on the next page, the

arrow points from the chi ld commit to the parent

commit. This is an important convention. Enter:

git log

http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

29

You wil l see something l ike:

commit ce3ed3fbb350688a10eaa793dc2142b14b8

a2b74

Author: Pi <acdsip61-pi@yahoo. com>

Date: Sun Sep 28 12: 40: 53 2014 +1000

Changed Rocks Y > R

1. Changed all references to rocks

from the char "Y" to "R"

a. In a comment

b. In a single line of code

2. Tested

commit 74893eddd81140341b267e7c9c1fa26fadf

e86de

Author: Pi <acdsip61-pi@yahoo. com>

Date: Sun Sep 28 12: 40: 52 2014 +1000

Initial Commit

Figure 1 : A simple picture of the current repo history

For more detai ls you might want to look at

http://git-scm.com/book/en/Git-Basics-Recording

-Changes-to-the-Repository.

Branches

We now have two branches - master and

make_rocks_R. Let’s make another change on a

new branch and then look at the history. Make

sure that you are using the master branch. Enter:

git checkout master

You wil l see the output:

Switched to branch ' master'

Now let’s examine the file game/snake. py

again. This time I have noticed that when setting

up colours (with the method call

curses. color_pair()) the original

programmer used a literal constant. I t is good

practice to use more meaningful symbolic names

(l ike curses. COLOR_RED instead of the l iteral

value 1) .

We are going to make two changes. The text

curses. color_pair(2) wil l be changed to

curses. color_pair(curses. COLOR_GREEN)

and the text curses. color_pair(1) wil l be

changed to curses. color_pair(curses.

COLOR_RED) . Documentation on the Curses

l ibrary is avai lable at http://docs.python.org/

howto/curses.html. Enter:

git branch use_curses_symbols

git checkout use_curses_symbols

You wil l now see the output:

Switched to branch ' use_curses_symbols'

With the above commands I created a new

branch (from master , not from make_rocks_R)

cal led use_curses_symbols and checked it out.

Edit the file game/snake. py using your favourite

text editor. In the version of snakes I have there

are two code changes to make - one on l ine

52 and the other on l ine 1 48. Make the changes

as described above. Save the changes and test

the game by playing it again.

I f I run the command git diff I can see the

fol lowing report:

diff --git a/game/snake. py b/game/snake. py

index cef8d07. . ec8ee6e 100755

--- a/game/snake. py

+++ b/game/snake. py

@@ -49, 7 +49, 7 @@ def add_block(scr,

width, height):

if empty:

if it is, replace it with a "Y"

and return

- scr. addch(y, x, ord("Y"),

http://git-scm.com/book/en/Git-Basics-Recording-Changes-to-the-Repository
http://docs.python.org/howto/curses.html

30

curses. color_pair(2))

+ scr. addch(y, x, ord("Y"),

curses. color_pair(curses. COLOR_GREEN))

return

def snake(scr):

@@ -145, 7 +145, 7 @@ def snake(scr):

replace the character with a "O"

- scr. addch(y, x, ord("O"),

curses. color_pair(1))

+ scr. addch(y, x, ord("O"),

curses. color_pair(curses. COLOR_RED))

update the screen

Now we can add and commit our changes. Enter:

git add game/snake. py

git commit -m "Use curses lib symbolic na

mes in color_pair() method calls"

You should see the fol lowing output:

[use_curses_symbols d7d093a] Use curses

lib symbolic names in color_pair() method

calls

1 file changed, 2 insertions(+), 2

deletions(-)

Now if we run the git log command we only

see two commits:

commit 1f2962b4e0714de810b97a35ca87290c484

42d10

Author: Pi <acdsip61-pi@yahoo. com>

Date: Sun Sep 28 12: 40: 55 2014 +1000

Use curses lib symbolic names in

color_pair() method calls

commit 74893eddd81140341b267e7c9c1fa26fadf

e86de

Author: Pi <acdsip61-pi@yahoo. com>

Date: Sun Sep 28 12: 40: 52 2014 +1000

Initial Commit

What happened to our other commit where we

changed the character for our rocks? The

answer is that it is on another branch – it is not

part of the history of our current workspace.

Add the option --all to see all the commits

across al l the branches. Enter:

git log --all

You wil l see something l ike the fol lowing:

commit 1f2962b4e0714de810b97a35ca87290c484

42d10

Author: Pi <acdsip61-pi@yahoo. com>

Date: Sun Sep 28 12: 40: 55 2014 +1000

Use curses lib symbolic names in

color_pair() method calls

commit ce3ed3fbb350688a10eaa793dc2142b14b8

a2b74

Author: Pi <acdsip61-pi@yahoo. com>

Date: Sun Sep 28 12: 40: 53 2014 +1000

Changed Rocks Y > R

1. Changed all references to rocks

from the char "Y" to "R"

a. In a comment

b. In a single line of code

2. Tested

commit 74893eddd81140341b267e7c9c1fa26fadf

e86de

Author: Pi <acdsip61-pi@yahoo. com>

Date: Sun Sep 28 12: 40: 52 2014 +1000

Initial Commit

Figure 2: The current repo history with three branches and

one commit on each branch.

As you can see git commands take extra

parameters to change the way they work.

A useful way to see the above history using quite

a complex log command is shown below (enter it

al l as one continuous l ine:

31

git log --graph --pretty=format: ' %Cred%h%

Creset -%C(yellow)%d%Creset %s %Cgreen(%c

r) %C(bold blue)<%an>%Creset' --abbrev-co

mmit --date=relative --all

I t is quite hard work to type this in. Fortunately

Git has an alias feature which al lows us to

simplify commands. Enter the fol lowing

command, again as one continuous l ine:

git config --global alias. lg "log --graph

--pretty=format: ' %Cred%h%Creset -%C(yello

w)%d%Creset %s %Cgreen(%cr) %C(bold blue)

<%an>%Creset' --abbrev-commit --date=rela

tive --all"

Now all you need to do in future is enter the

command git lg as lg has become an alias for

the much longer version of log shown above.

More information about al iases is avai lable at

https://git.wiki .kernel.org/index.php/Aliases.

As you have instal led the gitk program (from

part 1 of this article) you can also use this to

display this log information in a graphical

program. Enter:

gitk --all&

All the various reports from git log and gitk

refer to our branches by name. In addition, there

is a HEAD revision label. This is a reference to

the last commit we made on a branch, so every

branch has a HEAD. General ly the HEAD refers

to the last commit on the current default branch.

Commit IDs

At the end of part 1 I promised I would explain

the commit field (commit ID), as shown in the

output of the git log command. The commit ID

is an important concept that deserves its own

section.

In many VCS tools it is enough to give each new

commit a revision number such as 1 , 2, 3 and so

on. We can also identify branches by using

dotted numbers. For example, 3.2.5 would be the

5th revision of the 2nd branch from version 3.

However in Git we are not sharing a single repo

database and there has to be a way of keeping

al l the possible commits on a distributed project

unique. Git solves this problem by using a SHA-1

string. SHA-1 (Secure Hash Algorithm) is a

computer algorithm that, when presented with a

string of bits (1 's and 0’s), wi l l present a different

40 character result even when two strings are

different in any way, even just one bit.

You can see this effect by running the fol lowing

experiment. Enter:

echo ' Hello World' | git hash-object --st

din

The result wi l l be:
557db03de997c86a4a028e1ebd3a1ceb225be238

Now enter:

echo ' Hello World! ' | git hash-object --s

tdin

This time the result is:
980a0d5f19a64b4b30a87d4206aade58726b60e3

This is exactly what Git does for each commit,

only it uses the contents of the committed files

(plus the ID of the commit parents) to calculate

the new SHA-1 commit ID. I f two commits from

two different repos have the same ID they are the

same commits and we consider them identical.

Using the Git graphical tools

Most of the examples so far have used the

command line interface. However, Git does come

with two GUI interfaces – gitk and git gui .

You have already seen that gitk is useful for

looking at the history of changes in a repository.

git gui can be used to perform operations such

as add, commit, checkout etc.

Let’s repl icate our previous examples using the

standard git GUI tools. Create a directory cal led

~/snakes2 and unpack the game. tar. gz file

into it. Enter the fol lowing command and explore:

git gui

https://git.wiki.kernel.org/index.php/Aliases

32

SKILL LEVEL : BEGINNER

Jon Silvera

Guest Writer

Part 4: Font scaling plus adding

the final touches to our game

So far in this series we have covered sprites,

col l isions and controls. This month we wil l tidy things

up a bit by adding a start screen, scoring, l ives, a

boss and an ending.

New FUZE BASIC editor

However before we get started I would l ike to make a

suggestion. At FUZE we are busy working on a new

version of the editor. You can download this

immediately to your Raspbian desktop. Visit

http://www.fuze.co.uk/resources-2 then cl ick on the

"GET FUZE BASIC" tab for detai ls on downloading.

The "work in progress" version has a more standard

editor and as such is easier to save, load and edit

programs. However if you prefer to stick to the

original then you can sti l l run FUZE BASIC from the

RUN <F3> menu.

From the beginning...

First, you wil l need to load several new sprites so

please visit http://www.fuze.co.uk/resources-2 and

then cl ick on the "Tutorials" tab and download the

fol lowing sprites; themagpi. bmp, fblogo. bmp,

blackberry. bmp and ship. bmp. You need to

download and save these sprites to the MagPi folder

where your program is saved.

Unfortunately you have a lot of work on your hands

this month as this is the final and finished program.

The problem is that so much has changed it real ly

needs typing in again from the beginning. Also it

would take too much space to add everything

individual ly so we are going to go through the whole

program section by section. The downside is that this

means the game wil l not work unti l we have finished

entering the complete l isting.

Once again please bring up the FUZE

BASIC environment using the icon on the

Desktop. I f you are using the older version,

go to the Editor with <F2> and enter:

// MagPi Game

PROC SetupMain

CYCLE

PROC SetupGame

PROC attract

WHILE lives > 0 CYCLE

PROC CheckControls

PROC DrawShip

PROC DrawEnemy

PROC DrawBullet

PROC BOSS

IF WIN THEN PROC wellDone

PROC updateScreen

UPDATE

REPEAT

PROC gameOver

REPEAT

END

Remember, you wil l only get errors if you try and RUN

<F3> this so just be patient for now.

http://www.fuze.co.uk/resources-2
http://www.fuze.co.uk/resources-2

33

First we call the main setup routine to load al l the

sprites and variables. These items are required each

time the game is executed for the first time but not

when the game restarts within the program. This way

we can keep a high score, have l ives and levels.

Next is the main loop fol lowed by SetupGame and

attract procedures. The first resets the main

variables to start each new game while attract

displays the start-up screen (known as attract mode

in the old days).

Next we check to see if we have any l ives left and

then check for keys pressed, draw everything and

then check to see if it is ‘boss time’ yet. Al l going

well , and as long as there are l ives left, then it wi l l

REPEAT back to WHILE lives > 0. I f we are out of

l ives then the gameOver procedure is cal led and we

start again.

Now add the fol lowing after the END statement:

DEF PROC updateScreen

CLS2

INK = Yellow

fontScale(3, 3)

hvTab (0, 0)

PRINT "Score "; score

INK = Red

hvTab (tWidth / 2 - 7, 0)

PRINT "Hi Score "; hiScore

INK = Yellow

hvTab (tWidth - 7, 0)

PRINT "Level " ; Level

FOR num = 0 TO lives - 1 CYCLE

plotImage (shipPic, 0 + getImageW (shipPic)

* num, -10)

REPEAT

COLOUR = Silver

RECT (0, 62, gWidth, 4, 1)

ENDPROC

This procedure prepares and displays various pieces

of information l ike the player’s score, the hi-score and

the number of l ives remaining.

CLS2 , as previously covered, clears the buffer screen.

fontScale(3, 3) sets the current font size to 3

times normal size, both horizontal ly and vertical ly.

hvTab positions the text cursor at (x, y) . The FOR loop

draws the number of l ives as player ships along the

bottom and the RECT command draws a thin si lver

rectangle along the bottom of the screen.

For the remainder, just add each new section of code

to the end of the existing program. Enter:

DEF PROC BOSS

IF Enemy(EnemyMax, 1) <= 0 OR Enemy(EnemyMax,

3) = 0 THEN Warning = 1

IF Warning THEN

WarningCount = WarningCount + 1

IF WarningCount <= 150 THEN

INK = RND(15) + 1

fontScale(3, 5)

hvTab (tWidth / 2 - LEN (Warning$) / 2,

tHeight / 4) * 3

PRINT Warning$

UPDATE

ELSE

Warning = 0

bossActive = 1

ENDIF

ENDIF

IF bossActive THEN

bossX = bossX - 2 * Level

IF bossX < -getSpriteW(boss) THEN PROC ga

meOver

bossAng = bossAng + 3

bossX = bossX + bossXX * COS(bossAng)

bossY = bossY + bossYY * SIN(-bossAng)

plotSprite(boss, bossX, bossY, 0)

IF bossAng >= 360 then bossAng = 0

ENDIF

ENDPROC

The boss springs into action only if the Warning has

been activated, and this is only activated if the very

last enemy has either left the screen to the left or has

been destroyed. The “Warning” is then displayed,

and when finished the boss itself appears. The boss

fol lows a simple circular pattern but its speed across

the screen increases due to the statement bossX =

bossX - 2 * Level .

Once again don’t bother trying to RUN <F3> this yet

as it just does not have enough to go on but here is a

preview to whet your appetite.

34

Now add the fol lowing code:

DEF PROC DrawBullet

IF Shot(1) > gWidth THEN

hideSprite (Shot(0))

Shot(3) = 0

Fire = 0

ENDIF

IF Shot(3) THEN

Shot(1) = Shot(1) + 8

plotSprite (Shot(0), Shot(1), Shot(2), 0)

Hit = spriteCollidePP (Shot(0), 2)

IF Hit > 0 AND Hit <= 64 THEN

score = score + Enemy(Hit - 1, 5) * Level

EnemyCount = EnemyCount + 1

Enemy(Hit - 1, 3) = 0

hideSprite (Hit)

hideSprite (Shot(0))

Shot(3) = 0

Fire = 0

ENDIF

IF Hit = 68 THEN

score = score + 500

bossHit = bossHit - 1

hideSprite (Hit)

hideSprite (Shot(0))

Shot(3) = 0

Fire = 0

IF bossHit <= 0 THEN

WIN = 1

bossActive = 0

Level=Level + 1

PROC SetupGame

ENDIF

ENDIF

ENDIF

ENDPROC

You are only al lowed a single bul let on the screen at a

time. First we check if it is sti l l on the screen and if not

then we hide it then reset the Fire variable so

another bul let can be shot. The bul let moves along at

8 pixels at a time and is checked to see if i t has

col l ided with anything.

I f i t hits a rock then the rock is removed, the score is

increased and the bul let is removed so another can

be fired. I f i t comes into contact with the boss then the

bossHit count decreases. I f the bossHit counter

gets to 0 then the game starts again with an

increased level and the score carried over. The WIN

variable activates the “Congratulations” screen later.

The next three procedures are responsible for

working out bul let positions, checking various

col l isions and plotting rocks and the player’s ship on

the screen. Enter:

DEF PROC Bullet

Fire = 1

Shot(1) = ShipX + getSpriteW (Ship) + 8

Shot(2) = ShipY + getSpriteH (Ship) / 2 - 10

Shot(3) = 1

ENDPROC

DEF PROC DrawEnemy

FOR eID = 0 TO EnemyMax CYCLE

IF Enemy(eID, 3) THEN

Enemy(eID, 1) = Enemy(eID, 1) - Enemy(eI

D, 6)

EY = Enemy(eID, 2) + COS (Enemy(eID, 1))

* Enemy(eID, 4) * 10

IF Enemy(eID, 1) > -getSpriteW(Rock(eID)

) * 2 AND Enemy(eID, 1) <= gWidth THEN plotSpr

ite (Enemy(eID, 0), Enemy(eID, 1), EY, 0)

IF Enemy(eID, 1) <= -getSpriteW(Rock(eID

)) * 2 THEN

hideSprite(Rock(eID))

Enemy(eID, 3) = 0

ENDIF

ENDIF

REPEAT

ENDPROC

DEF PROC DrawShip

plotSprite (Ship, ShipX, ShipY, ShipID)

Crash = spriteCollidePP (Ship, 2)

IF Crash > 0 AND Crash <= 64 THEN

lives = lives - 1

Enemy(Crash - 1, 3) = 0

hideSprite (Crash)

ShipX = 0

ShipY = gHeight / 2

ENDIF

IF Crash = 68 THEN

lives = lives - 1

ShipX = 0

ShipY = gHeight / 2

ENDIF

ENDPROC

35

Note: The highl ighted code is one single l ine. What it

does is to figure out if a rock is visible on the screen

by checking if i t is too far left or too far right. I t only

plots the sprite if i t is in the viewable area.

The DrawShip procedure plots the player’s ship and

checks to see if i t has col l ided with either the rocks

(sprite IDs 0 to 64) or the boss (sprite ID 68). I f i t

crashes into a rock the player’s ship is returned to its

original position, lives is reduced by 1 and any

rocks we may have crashed into are removed with

the hideSprite command.

The player controls procedure is very straightforward

and we have covered most of it before. Enter:

DEF PROC CheckControls

ShipID = 1

UpKey = scanKeyboard (scanUp)

DownKey = scanKeyboard (scanDown)

LeftKey = scanKeyboard (scanLeft)

RightKey = scanKeyboard (scanRight)

SpaceKey = scanKeyboard (scanSpace)

IF SpaceKey AND NOT Fire THEN PROC Bullet

IF UpKey AND ShipY <= gHeight - 100 THEN

ShipY = ShipY + 8

ShipID = 2

ENDIF

IF DownKey AND ShipY >= 64 THEN

ShipY = ShipY - 8

ShipID = 0

ENDIF

IF LeftKey AND ShipX >= 0 THEN ShipX = ShipX

- 8

IF RightKey AND ShipX <= gWidth / 2 THEN Shi

pX = ShipX + 4

ENDPROC

Various keys are checked to see if they are being

pressed and actions take place accordingly. Notice

the RightKey wil l only work if the player is not too far

forward and it moves at half the number of pixels (4)

than al l the other directions (8). Moving slowly

forward gives an extra sense of real ism.

Here are some smaller procedures. Enter:

DEF PROC killEverything

FOR num = 0 TO EnemyMax CYCLE

hideSprite (Rock(num))

REPEAT

hideSprite (Shot(0))

hideSprite (Ship)

IF bossActive THEN hideSprite (boss)

bossActive = 0

CLS2

ENDPROC

DEF PROC wellDone

WAIT(1)

PROC killEverything

FOR delay = 0 TO 300 CYCLE

INK = RND(15) + 1

fontScale(5, 5)

hvTab (tWidth / 2 - LEN (Congrats$) / 2,

tHeight / 2)

PRINT Congrats$

UPDATE

REPEAT

WIN = 0

ENDPROC

DEF PROC gameOver

PROC killEverything

text$ = "GAME OVER"

fontScale (4, 4)

FOR num = 0 TO 100 CYCLE

hvTab (tWidth / 2 - LEN (text$) / 2, tHeig

ht / 2)

INK = RND (15) + 1

PRINT text$

UPDATE

REPEAT

IF score > hiScore THEN hiScore = score

clearKeyboard

WIN = 0

lives = 0

ENDPROC

killEverything is used to reset and hide al l the

active sprites. I t is cal led before anything major

happens l ike ki l l ing the boss and losing al l your l ives.

36

wellDone is only cal led when you have successful ly

ki l led the boss. I t simply displays “Congratulations” in

the middle of the screen.

gameOver displays “GAME OVER” in the middle of

the screen and resets a few ‘trigger’ variables. For

example lives is set to 0, which controls the main

program loop.

Attracting players

Every half decent game must have an attract screen.

I t just provides something to look at when the game is

not running. Enter:

DEF PROC attract

CLS

t1X = gWidth/2 - getSpriteW (title1) / 2

t2X = gWidth/2 - getSpriteW (title2) / 2

t1Y = gHeight - getSpriteH (title1) * 1. 5

t2Y = getSpriteH (title2)

angle = 0

WHILE NOT scanKeyboard (scanSpace) CYCLE

t1XX = t1X + 250 * COS (angle)

t1YY = t1Y + 40 * SIN (angle)

t2XX = t2X - 80 * COS (-angle)

t2YY = t2Y - 10 * SIN (-angle)

plotSprite (title1, t1XX, t1YY, 0)

plotSprite (title2, t2XX, t2YY, 0)

INK = RND (15) + 1

fontScale (3, 3)

hvTab (tWidth / 2 - LEN (Press$) / 2, tHei

ght / 2)

PRINT Press$

UPDATE

angle = angle + 2

REPEAT

hideSprite (title1)

hideSprite (title2)

WAIT (0. 5)

CLS

clearKeyboard

ENDPROC

There are several cosine and sine calculations here.

The angle variable is increased to provide 360

degree movement. The X and Y positions of both

images are calculated by taking a point of origin (t1X)

then adding and multiplying a radius (250) by the

cosine of the current angle. The point of origin (t1X)

never changes as it is only the radius that is operated

on. This is repeated on t1Y, t2X and t2Y and then

the two images are drawn as sprites.

“Press the Space Bar” is displayed in the middle of

the screen using hvTab and PRINT Press$. The

whole thing is enclosed in a WHILE loop that checks

for the <Space bar> to be pressed. Once the <Space

bar> is pressed the loop ends, the sprites are

removed and the procedure returns.

There are two setup procedures - SetupMain and

SetupGame . The SetupMain procedure initial ises

everything that is required the very first time you run

the game; things l ike text messages, al l of the sprite

graphics and major variables. Enter:

DEF PROC SetupMain

HGR

hiScore = 0

WIN = 0

updateMode = 0

Warning$ = "Warning, Huge Fruit Approaches! "

Press$ = "Press the Space Bar"

Congrats$ = "CONGRATULATIONS! "

Ship = newSprite (3)

loadSprite ("Player1. bmp", Ship, 0)

loadSprite ("Player2. bmp", Ship, 1)

loadSprite ("Player3. bmp", Ship, 2)

setSpriteTrans (Ship, 255, 0, 255)

EnemyMax = 63

DIM Enemy(EnemyMax, 6)

DIM Rock(EnemyMax)

FOR num = 0 TO EnemyMax CYCLE

Rock(num) = newSprite (1)

loadSprite ("BigRock. bmp", Rock(num), 0)

setSpriteTrans (Rock(num), 255, 0, 255)

REPEAT

DIM Shot(3)

Shot(0) = newSprite (1)

loadSprite ("Bullet. bmp", Shot(0), 0)

setSpriteTrans (Shot(0), 255, 0, 255)

37

title1 = newSprite (1)

loadSprite ("themagpi. bmp", title1, 0)

setSpriteTrans (title1, 255, 0, 255)

title2 = newSprite (1)

loadSprite ("fblogo. bmp", title2, 0)

setSpriteTrans (title2, 255, 0, 255)

shipPic = loadImage ("ship. bmp")

boss = newSprite (1)

loadSprite ("blackberry. bmp", boss, 0)

setSpriteTrans (boss, 255, 0, 255)

ENDPROC

We have covered this before but as a reminder the

newSprite(#) command sets up a variable to store

a sprite container ID. The # signifies how many

sprites go into the container. For example, Ship =

newSprite (3) defines the sprite Ship and gives it

three slots for graphics. This is then referenced by

plotSprite (Ship, X, Y, #) and is how we

change the Ship graphic depending on if i t is moving

up, down or just staying sti l l .

loadSprite loads a sprite graphic into a container

slot specified by the number at the end of the

command.

setSpriteTrans forces one colour to be

transparent, meaning it wi l l never be displayed. This

is important as even black would be displayed over a

white background. I general ly use bright pink as the

background colour for sprites as it is not often used

for anything else.

The great thing about simple sprite controls l ike the

above is that it is so easy to change the graphics by

just changing a fi le name. You should probably use

similar sizes though and remember to set the

transparent colour.

Almost there...

Ok, this is it… the final furlong. The last procedure is

the game setup. This configures al l the variables as

required each time a level is played. The first part

checks to see if i t is a new game or a new level.

Everything thereafter configures game variables to

start a new level. Enter:

DEF PROC SetupGame

IF NOT WIN THEN

lives = 3

Level = 1

score = 0

ELSE

lives = lives + 1

score = score + 10000

ENDIF

ShipX = 0

ShipY = gHeight / 2

ShipID = 0

bossX = gWidth + getSpriteW (boss)

bossXX = 10

bossY = gHeight / 2 + getSpriteH (boss) / 2

bossYY = 10

bossAng = 0

bossHit = 10

WIN = 0

eID = 0

EnemyID = 0

EnemyX = 0

EnemyY = 0

EnemyActive = 1

EnemyVariation = 0

EnemyScore = 0

EnemySpeed = 0

EnemyCount = 0

RESTORE

UNTIL EnemyCount > EnemyMax CYCLE

READ EnemyX

READ EnemyY

READ EnemyVariation

READ EnemyScore

READ EnemySpeed

EnemyScore = EnemyScore * EnemySpeed

DATA 1280, 100, 3, 50, 3

DATA 1280, 500, -3, 50, 3

DATA 4000, 366, 4, 50, 4

DATA 4000, 230, -4, 50, 4

DATA 7500, 100, 6, 50, 5

DATA 7500, 500, -6, 50, 5

DATA 11500, 400, 5, 50, 6

DATA 11500, 300, -5, 50, 6

FOR num = 0 TO 7 CYCLE

Enemy(EnemyCount + num, 0) = Rock(Enemy

Count + num)

Enemy(EnemyCount + num, 1) = EnemyX + nu

m * getSpriteW (Rock(0))

Enemy(EnemyCount + num, 2) = EnemyY

Enemy(EnemyCount + num, 3) = EnemyActive

Enemy(EnemyCount + num, 4) = EnemyVaria

tion

Enemy(EnemyCount + num, 5) = EnemyScore

Enemy(EnemyCount + num, 6) = EnemySpeed

* Level

REPEAT

EnemyCount = EnemyCount + 8

REPEAT

Fire = 0

bossActive = 0

Warning = 0

WarningCount = 0

ENDPROC

The DATA section resets al l the enemy rocks to their

default position. The boss is reset and then the

procedure returns to the main loop.

Time to play

Once you have typed in al l of the l isting, you can

attempt to RUN it by pressing <F3>.

Now, the chances of this working perfectly first time

are not high. Errors usual ly creep in so expect to do

some debugging. General ly most errors are typing

mistakes, incorrect spel l ing and/or wrong

capital isation. You have to be very thorough.

Once you get it up and running, play the game. I have

managed to get to the level five boss, can you?

The great thing about a l isting l ike this is that you get

to experiment, which is exactly what your next steps

should be. Most of the variable names make sense so

you should be able to change most things.

However, if you are up to the chal lenge then why not

add some sound, explosions, more animation and

perhaps different enemies and bosses for later

levels.. . and let’s not forget the Power Up! The MagPi

game is a decent l i ttle game start but there is plenty

of scope to improve, change and experiment.

This just leaves me to say, it has been an absolute

privi lege to work on this project and I have thoroughly

enjoyed doing it. I hope you have enjoyed it too and at

the very least gained a better understanding of

BASIC and now appreciate just how great a language

it can be.

Why not use your new FUZE BASIC skills and

enter our programming competition where

there are £450 of prizes to be won. Full details

are on the opposite page.

My name is Jon Silvera. Please feel free to contact

me at contact@fuze.co.uk. I am happy to try and help

if you have any questions and I would also love to see

any projects you develop with FUZE BASIC.

mailto:contact@fuze.co.uk
http://www.brucesmith.info

39

To conclude our FUZE BASIC programming series, the folks at FUZE are generously running a FUZE BASIC

programming competition, with an incredible £450 (US$720) of prizes!

First prize is the amazing FUZE T2-R kit, worth £230. Not

only does this have everything from the FUZE T2-B kit, you

also get a Raspberry Pi. To maximise your enjoyment of the

Raspberry Pi, i t also includes an OWI programmable robotic

arm kit!

Second prize is the superb FUZE T2-B kit, worth £1 30.

Again, this contains everything you need including a

solderless breadboard, various electronic components, SD

card with FUZE BASIC, printed Programmer's Reference

Guide and much more! You just add your Raspberry Pi.

Third prize is the excel lent FUZE T2-C kit for your Raspberry Pi. Worth £90, this

kit contains the FUZE case, keyboard, integrated USB hub, FUZE I/O board and

power supply.

Detai ls of the prizes can be found at http://www.fuze.co.uk/products.

In addition to the FUZE BASIC programming series that appeared in Issues 25,

26, 27 and 28 of The MagPi, you can also download the FUZE BASIC

Programmer's Reference Guide from http://www.fuze.co.uk/resources-2/.

Terms and conditions

• The type of entry is your choice. For example, you could program a game, a tech demo, an artificial intel l igence

project or anything, as long as it demonstrates some thought, creativity and ingenuity.

• The program must be written using FUZE BASIC.

• The closing date for the competition is Sunday 7th December 201 4. The winners wil l be announced in Issue

30 of The MagPi.

• To submit your entry / entries, send a zip fi le for each entry via email to contact@fuze.co.uk by the closing date.

• Al l prizes are non-refundable and non-transferrable.

• No cash alternative wil l be offered for any prizes.

• The judge’s decision is final.

• Entries wil l not be accepted from employees of FUZE Technologies Ltd or any company involved in the

competition / prize draw and their associated, affi l iated or subsidiary companies, their famil ies, agents, or anyone

connected with the competition / prize draw.

• Entrants agree that their name, artwork and representations of their submission may be used without

remuneration for marketing purposes.

• Entrants agree to grant FUZE Technologies a perpetual l icense to freely distribute their submissions without

remuneration or contract. The copyright of the submission remains with the author.

COMPETITION

http://www.fuze.co.uk/products
http://www.fuze.co.uk/resources-2/
mailto:contact@fuze.co.uk

http://www.fuze.co.uk

Cotswold Raspberry Jam

When: Saturday 22nd November 201 4, 1 .00pm to 4.00pm
Where: 95 Promenade, Cheltenham, Gloucestershire, GL50 1 HZ. UK

A Raspberry Pi computing event for Gloucestershire and beyond. Deliberately family friendly, with a
portion of tickets reserved for chi ldren. http://www.eventbrite.co.uk/e/1 381 582851 5

Hull Raspberry Jam

When: Saturday 22nd November 201 4, 1 0.30am to 3.30pm
Where: The Kingswood Academy, Wawne Road, Bransholme, Hul l , HU7 4WR, UK

Supported by the DfE, Raspberry Pi Foundation and RM Education. The event wil l have workshops,

talks and demonstrations. http://www.eventbrite.co.uk/e/1 3501 929635

Warwick (USA) Raspberry Jam

When: Monday 24th November 201 4, 7.00pm to 8.30pm
Where: Warwick Public Library, 600 Sandy Lane, Warwick, RI 02889, USA

Join our monthly Raspberry Jam, an event to learn about the Raspberry Pi, show off your projects and

meet some fel low Pi users. Event detai ls at http://goo.gl/JRmJa1

Want to keep up to date with al l things Raspberry Pi in your area?
Then this section of The MagPi is for you! We aim to l ist Raspberry Jam events in your area, providing

you with a Raspberry Pi calendar for the month ahead.

Are you in charge of running a Raspberry Pi event? Want to publicise it?
Email us at: editor@themagpi.com

Raspberry Jam Belgium

When: Thursday 1 3th November 201 4, 7.00pm to 1 0.00pm CET
Where: Oh! Mechelen, Kanunnik De Deckerstraat 20 A, Mechelen 2800 BE, Belgium

The first Raspberry Jam in the region. Both Dutch and non-Dutch speakers are welcome. An

introduction to the Raspberry Pi for al l . http://www.eventbrite.com/e/1 3561 393493

Raspberry Jam Berlin

When: Saturday 22nd November 201 4, 1 2.00pm to 5.00pm CET
Where: Technische Universität Berl in, 4th Floor, Room FH 403, Fraunhoferstra?e 33-36, 1 0587 Berl in

Raspberry Jam Berl in event is a user group of enthusiasts looking to learn or teach what they know. For

ful l event detai ls visit http://raspberryjamberl in.bytingidea.com

41

http://www.eventbrite.co.uk/e/13815828515
http://www.eventbrite.com/e/13561393493
http://raspberryjamberlin.bytingidea.com
http://goo.gl/JRmJa1
http://www.eventbrite.co.uk/e/13501929635

The MagPi is a trademark of The MagPi Ltd. Raspberry Pi is a trademark of the Raspberry Pi Foundation. The MagPi magazine is
collaboratively produced by an independent group of Raspberry Pi owners, and is not affiliated in any way with the Raspberry Pi
Foundation. It is prohibited to commercially produce this magazine without authorization from The MagPi Ltd. Printing for non commercial
purposes is agreeable under the Creative Commons license below. The MagPi does not accept ownership or responsibility for the content
or opinions expressed in any of the articles included in this issue. All articles are checked and tested before the release deadline is met but
some faults may remain. The reader is responsible for all consequences, both to software and hardware, following the implementation of
any of the advice or code printed. The MagPi does not claim to own any copyright licenses and all content of the articles are submitted with
the responsibility lying with that of the article writer. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-nc-sa/3.0/

Alternatively, send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041 , USA.

Have Your Say...
The MagPi is produced by the Raspberry Pi community, for the Raspberry Pi
community. Each month we aim to educate and entertain you with exciting projects for
every ski l l level. We are always looking for new ideas, opinions and feedback, to help us
continue to produce the kind of magazine you want to read.

Please send your feedback to editor@themagpi.com, or post to our Facebook page at
http://www.facebook.com/MagPiMagazine, or send a tweet to @TheMagP1 . Please
send your article ideas to articles@themagpi.com. We look forward to reading your
comments.

PPRRIINNTT EEDDIITTIIOONN AAVVAAIILLAABBLLEE
WWOORRLLDDWWIIDDEE

The MagPi is avai lable for FREE from http://www.themagpi.com, from The MagPi iOS
and Android apps and also from the Pi Store. However, because so many readers have
asked us to produce printed copies of the magazine, we are pleased to announce that
printed copies are now regularly avai lable for purchase at the fol lowing Raspberry Pi
retai lers.. .

Americas EMEA AsiaPac

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.themagpi.com
https://www.modmypi.com/the-magpi-magazine
http://www.pi-supply.com/product-category/books-and-magazines/the-magpi-magazine/
http://thepihut.com/collections/the-magpi-raspberry-pi-magazine
https://www.adafruit.com/index.php?main_page=adasearch&q=the+magpi
http://www.buyraspberrypi.com.au/shop/magpi-issue-16/
http://www.facebook.com/MagPiMagazine
mailto:articles@themagpi.com
http://swag.raspberrypi.org/products/magpi
mailto:editor@themagpi.com
http://twitter.com/TheMagP1

